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Abstract. We investigated the electron correlation effects in one-dimensional superlattices
composed of free (uncorrelated) and repulsive (correlated) sites, using Lanczos diagonalization
of chains of up to ten sites described by a Hubbard-like Hamiltonian. The electronic and
magnetic properties are shown to depend primarily on the splitting between single-site energies
for the correlated and uncorrelated orbitals, respectively, and on the average electron density in
the system. The local moments and spin–spin correlations are closely related to the changes
in the conductivity, and the magnetic properties are enhanced when the insulating regime is
approached. Irrespective of the type of superlattice considered, the local moments form on
the correlated orbitals, and may only be induced on single uncorrelated orbitals which separate
correlated clusters. The transition from metallic to insulating behaviour can be qualitatively
understood in terms of a strongly correlated model, with two Hubbard subbands due to strong
Coulomb interactions accompanied by a metallic band of uncorrelated states.

1. Introduction

Materials of the superlattice type are of great interest both as regards theory and applications
as they exhibit a rich variety of novel physical properties. For example, three-dimensional
samples built up of alternating metallic magnetic (Fe, Ni or Co atoms) and metallic
nonmagnetic (Cu, Ag, Mn, Au or Mg atoms) layers show gigantic magnetoresistance or
spectacular oscillations of local magnetic moments due to modifications of the thickness
of the individual layers [1–4]. Thus, it is clear that nonrandom inhomogeneous systems
of strongly correlated electrons are very different from the relatively well studied and
understood homogeneous systems. Developing an at least qualitative electronic theory of
the magnetic properties of superlattices (starting from first principles) is a hard task. It is
therefore much more promising to start from a simple model which still contains the essential
physics, and allows one to understand the mechanism responsible for the changes of the
magnetization. Following this idea, Paiva and Santos [5] studied a one-dimensional (1D)
Hubbard-type model of a superlattice with a single s orbital per site. Metallic superlattice
layers were mimicked by alternating free sites, with Coulomb on-site interactionU = 0,
and insulating nonmagnetic layer sites, with significant Coulomb repulsionU > 0. The
superlattice atoms are coupled by the usual kinetic part (a hopping term). To simplify the
analysis, Paiva and Santos assumed that the on-site orbital energy was exactly the same for
all of the sites (i.e., both in metallic and in insulating layers).

In spite of the fact that the model was a drastic oversimplification, it revealed novel
and interesting physical mechanisms which could be relevant to a future more realistic
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theory of magnetic–nonmagnetic three-dimensional superlattices. On one hand, at half-
filling a weak form of frustration that was nevertheless sufficient to wipe out the strong
spin-density correlations (characteristic of homogeneous systems) was demonstrated. On the
other hand, spin-density correlations appeared for some superlattices away from half-filling.
Below half-filling the local magnetic moments were sometimes displaced from repulsive
to free (metallic) sites. There were also some other observations, as many simple types
of correlation function which characterize the system were calculated [5]. Although the
results of reference [5] were novel and appealing as regards providing an intuitive feel for
the physics, they require further study for a more general situation. This task is undertaken
in the present paper.

First, we released the artificial assumption of the absence of splitting between single-
site energies for correlated and uncorrelated orbitals. Second, we decided to study not
only the ground-state properties and ground-state correlation functions, but also the spectral
functions and optical conductivity, including the behaviour of the Drude peak under doping.
The reason for this is that local magnetic moments and spin–spin correlations are closely
related to changes in the conductivity [6]. Moreover, spin–spin correlation enhancement
can be expected when the insulating regime is approached.

We aim to achieve a better understanding of how the splitting of orbital energies
(i.e., finite charge-transfer energy), the average electron filling, and the specific superlattice
structure influence the electronic and magnetic properties of the systems studied. However,
with so many parameters and other factors influencing the electronic and magnetic properties,
some simple model capable of providing a qualitative description of the systems is highly
desirable. In the following we will propose such a model.

The paper is organized as follows. In section 2 the model Hamiltonian is introduced, and
the details of the exact-diagonalization method are discussed. In section 3 we summarize
the basic facts concerning the optical conductivity and the Drude peak for homogeneous
systems, and contrast them with those for a superlattice. In section 4 we introduce
the above-mentioned model, and confirm its validity through the computation of spectral
density functions for photoemission and inverse photoemission. Section 5 contains the
data concerning local magnetic properties and intersite spin–spin correlations for half-filling
and away from it. The paper is closed with a short summary and a discussion of general
implications of the results presented in section 6.

2. The model

We consider 1D superlattices which consist of periodic arrangements of two kinds of atom,
without and with on-site Coulomb interactionU , described by the Hamiltonian

H = ε0

∑
i∈F,σ

c
†
iσ ciσ + εU

∑
i∈R,σ

c
†
iσ ciσ +

∑
iσ

ti,i+1(c
†
i,σ ci+1,σ + HC)+ U

∑
i∈R

ni↑ni↓ (1)

wherec†i,σ (ci,σ ) are creation (annihilation) operators for an electron with spinσ at sitei,

and niσ = c
†
iσ ciσ are electron number operators. The first two terms of the Hamiltonian

stand for the orbital energy,εi , which takes one of two values:ε0 or εU , depending on
whether the orbital belongs to a free atom (i ∈ F ), or to an atom with Coulomb interaction
U (i ∈ R). The positions of free atoms are specified by the setF , while the positions
of repulsive atoms, withU > 0, are specified by the setR. These sets exhaust the entire
lattice, and one recovers the usual Hubbard Hamiltonian [7] if all of the atoms belong to
the setR.
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The third term describes the kinetic energyT , while the fourth term is the on-site
Coulomb repulsionU . This corresponds to the real structure of the superlattice in three
dimensions, consisting of an alternating sequence of ‘free layers’ (Ui = 0 for all sites
within the layer) and ‘repulsive layers’ (Ui > 0). We follow here (as far as possible) the
terminology introduced by Paiva and Santos [5]. In our case we focus on the direction
normal to the layers, and consider different textures characterized by the number of free
sites denoted asL0, accompanied by the corresponding number of repulsive sitesLU . The
pattern ofL0 free sites andLU repulsive sites alternates, and we simulate such systems by
diagonalizing finite clusters ofN sites.

The specific values of the model parameters as well as the appropriate boundary
condition (when working with the finite clusters) are of great importance. For 1D systems
at half-filling (n = 1), the so-called modified periodic boundary conditions (MBC) are one
possibility [8]. For MBC, whenM = 4m, wherem is a natural number, true periodic
boundary conditions (PBC) are used, whereas forM = 4m+2 one uses instead antiperiodic
boundary conditions (ABC). This choice follows from the different behaviours of linear
clusters withM = 4m andM = 4m + 2 sites, respectively [8–10]. In practice PBC and
ABC are implemented in a cluster with torus topology (a circle); the terminal hopping
integral tN,N+1 ≡ tN,1 in the case of PBC is taken as the normal hopping constant, but for
ABC it is taken with the opposite sign instead [9]. For the optical conductivity, we consider
also the so-called free boundary conditions (FBC) for which the clusters stay linear, and
tN,N+1 ≡ tN,1 ≡ 0. In general, however, FBC usually give much less good results for
really small clusters than the MBC because boundary effects (versus bulk effects) are more
pronounced for the FBC.

In the following we employed a more reliable and simple approach: in each case, i.e.,
for any lattice and any fillingn, we calculate the ground-state energy for both PBC and
ABC, and choose the boundary conditions which give a lower energy.

It is well known that the Lanczos method [12–14] is an excellent tool for obtaining
exact results for the ground states of finite clusters [15, 16, 11, 17], and we employ it
in the present work. In order to achieve a good physical insight and investigate in more
detail the dependence on the parameters, we consider relatively small clusters. Here we
apply Lanczos diagonalization to the models of superlattices, and investigate the properties
of the system by varying the energy splitting between the on-site energies (charge-transfer
energy),1 = ε0 − εU , Coulomb interactionU , and electron fillingn. For convenience,
εU is chosen as a global reference zero energy for all of the systems studied, andε0 is the
parameter to be varied. We useti,i+1 = −1 eV as the energy unit. Thereby, we do not
distinguish betweent0−0, t0−U , and tU−U , which denote the hopping constants for hopping
between nearest-neighbour sites, between either two sites both belonging to free layers, or
two different sites, one belonging to free and the second to a repulsive layer, or, finally,
between two sites both belonging to repulsive layers, respectively (the subscripts are self-
explanatory). Several calculations were performed for fixedU = 4|t | which corresponds
to intermediate correlations, as encountered in real transition metals. We also variedU

to investigate the changes in the magnetic correlations from weakly to strongly correlated
systems. The electron filling is given by the ration = (N↑ + N↓)/M, whereN↑ andN↓
are the total numbers of up and down electrons in the cluster ofM sites, respectively. In
the following, if not stated otherwise, nonmagnetic clusters withN↑ = N↓ are analysed.

Using the standard Lanczos packet we obtained data for:

(i) the ground-state energyE0,
(ii) the kinetic energyK,
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(iii) the average on-site occupation numbers〈niσ 〉,
(iv) the average double occupations〈niσ ni,−σ 〉 per site,
(v) the charge–charge correlation functions〈niσ ni+1,σ 〉 (nearest neighbours) and

〈ni,σ ni+2,σ 〉 (next-nearest neighbours),
(vii) the local moments〈S2

i 〉, and
(viii) the spin–spin correlations functions〈Si · Sj 〉.
Moreover, we determined the optical conductivity, which gives information about

whether the behaviour is insulating or metallic, and the spectral functions. These results are
reported in sections 3, 4, and 5.

3. Optical conductivity

3.1. The Drude peak for homogeneous system

We start the discussion with the optical conductivityσ(ω) at zero temperature, defined in a
standard way [19–22],

σ(ω) = Dδ(ω)+ σreg(ω). (2)

The first term in equation (2) corresponds to direct-current conduction due to the constant
external electric field. The precise value of the conductivity is defined by the magnitudeD

of the Drude peak; ifD = 0 one finds an insulator. The value ofD can be obtained from
the following formula [23]:

D = − π
N
〈ψN

0 |T |ψN
0 〉 + π Reχ(ω→ 0) (3)

whereχ(ω) is given by [23]

σreg(ω) = − 1

ωN
Imχ(ω) (4)

where the current operatorjp (defined for the wave vectorq = 0) is [24]

jp = i
∑
i,σ

ti,i+1(c
†
i+1,σ ci,σ − c†i,σ ci+1,σ ). (5)

In a different (but equivalent) form,D can be given as

D = − π
N
〈ψN

0 |T |ψN
0 〉 −

2π

N

∑
n6=0

|〈ψN
n |jp|ψN

0 〉|2
εn − ε0

(6)

or, using more compact notation,

D = − π
N
〈ψN

0 |T |ψN
0 〉 − 2

∫ ∞
0

dω σreg(ω). (7)

These two forms ofD, equations (6) and (7), will turn out to be useful in the arguments to
follow. The second term in equation (2), i.e.,σreg(ω), is related to optical transitions to the
excited states (therefore it is frequently called the optical absorption), and can be expressed
using the following formula [23–25]:

σreg(ω) = π

ωN

∑
n6=0

|〈ψN
0 |jp|ψN

n 〉|2δ[ω − (εn − ε0)] (8)

or equivalently as

σreg(ω) = − 1

ωN
Im 〈ψN

0 |j+p
1

ω + ε0−H + iη
jp|ψN

0 〉 (9)
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where |ψN
n 〉 denotes thenth excited eigenstate of the system filled byN electrons,

corresponding to the eigenenergyεn, and |ψN
0 〉 stands for the ground-state eigenvector.

(Here we use units wherec = e = h̄ = 1, as in reference [23].) The evaluation of
the optical conductivity using equation (9) is done in practice using the Lanczos method
combined with continued-fraction expansion [15, 16].

As already emphasized, the value ofD serves as an indication of whether the system
under consideration is an insulator or a conductor. In the latter case,D 6= 0, while in the
former one,D = 0. Therefore for the 1D (homogeneous) Hubbard model,D can be chosen
as the order parameter for the conductor-to-insulator phase transition [23, 24]. While this
criterion applies to an infinite 1D system, the only practical way to proceed for finite clusters
is to extrapolate theD-value which corresponds to an infinite system from the set ofDM

obtained for several clusters of different sizes using finite-size scaling. This task is difficult
in the present case, as the sign ofDM oscillates when one varies the boundary conditions
and/or such parameters as the cluster sizeM and the electron fillingn. In particular, for
the half-filled (n = 1) Hubbard model withU > 0 one finds thatDM tends to zero like an
exponential function forM = 4m clusters. However, for ABC,D4m > 0, while for PBC,
D4m < 0 [23, 24]. A similar behaviour is found also forM = 4m + 2 clusters; however,
each of theDM forms two branches with opposite signs forD: for ABC, D4m+2 < 0,
whereas for PBC,D4m+2 > 0.

Figure 1. Energy levels in the Hartree–Fock approximation for the half-filled homogeneous
system withM = 6 sites. ForU = 0, the ground-state energies for the configurations shown in
panels (A)–(D) are degenerate. On switching on finiteU , the degeneracy is lifted, but different
configurations are mixed within the matrix elements of the current operator.

The phenomenon of the sign ofDM changing according to the chosen boundary
conditions can be qualitatively understood as follows. First of all, depending on the type of
boundary conditions used, one has either a closed-shell or an open-shell system for a given
cluster with an even number of sites (to avoid pathological situations, we do not consider
odd-site clusters here). For example, the cluster ofM = 6 sites filled by six electrons
(n = 1) is a closed-shell system with PBC, but becomes an open-shell system if the ABC
are used. Four configurations, (A)–(D), degenerate atU = 0 are shown in figure 1. When
finite U is switched on, the degeneracy disappears, but these configurations are strongly



4760 D Góra et al

mixed within the matrix elements of the current operator (compare, e.g., reference [23]).
In fact, the resulting matrix elements in equation (6) can be in this case so large that the
second term on the right-hand side of equation (6) overwhelms the first (kinetic) term, and
the amplitude of the Drude peak is negative (D < 0). In contrast, in a closed-shell system
the ground state atU = 0 in nondegenerate, so no mixing between different configurations
occurs in the current operator, and the second term is not large. Thus, the kinetic term
dominates and the resulting Drude peak is positiveD > 0. Taken together, these features
explain why by changing the boundary conditions or by considering systems of increasing
size with fixed boundary conditions, one may obtain a similar situation, i.e., oscillation of
the sign ofD. We note that for the systems below half-filling (n < 1), D is approximately
proportional to±|n− 1|, and the sign oscillation phenomenon was not reported [23, 24].

0

0.4

0.8

1.2

1.6

0 4 8 12 16 20

� r
e
g(!
)

!= j t j

M = 8; U = 12j t j,
N" = N# = 3

Figure 2. The regular part of the optical conductivityσreg(ω) as a function ofω/|t | for the
Hubbard model withM = 8 sites (L0 = 0, LU = 8) with FBC, filled byN↑ = N↓ = 3
electrons, as obtained forε0 = 0 andU = 12|t |.

Now let us consider the case of FBC. The Drude peak for an open system has to vanish,
as no direct current is possible if the system is open. In contrast, one knows that for the
infinite system the Drude peak must be the same regardless of which boundary conditions
have been used. Although there seems to be a contradiction, in fact the so-called Drude
precursor (DP) appears for metallic clusters of finite size, with the spectral weight centred
not atω = 0, but at a small finite energyω (see figure 2). When the number of sitesN
grows to infinity, the DP gradually shifts towards zero. The appearance of the DP directly
influences the susceptibilityχ(ω), and as a result equation (3) is not valid when FBC are
used. Still, the value ofD can be obtained even for FBC simply by measuring the area of
the precursor peak. Alternatively, one can extract the DP weight from the spectra, compute
the area under the remaining spectral curve, and use equation (7) to determineD. One must
realize, however, that these methods can be inaccurate, and the extraction of the DP from
the remaining spectra can be problematic (for example, in systems with smallU when low-
energy excitations do mix with the precursor). Nevertheless, if the DP is absent altogether,
this shows that the system is an insulator.

We close this section with the total sum rule:∫ ∞
0

dω σ(ω) = − π
N
〈ψN

0 |T |ψN
0 〉. (10)

This allows for an internal check in the course of the computations of the conductivity.
In the large-U limit, the optical conductivity consists of two Hubbard subbands (figure 2)
which obey separate sum rules, and are determined by local correlation functions [6].
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3.2. The Drude peak for a superlattice

It is interesting to consider how the optical conductivity changes for a superlattice, and under
which conditions a given superlattice is metallic. We found that some of the properties of the
Drude peak reported for homogeneous systems are not valid for superlattices. We consider
first theM = 8 cluster withL0 = 2 andLU = 2 for ε0 = εU = 0, and vary the electron
filling n. The selected numerical results for the Drude peak intensities computed using
equation (3) are displayed in table 1.

Table 1. The Drude peak weightD8 and selected correlation functions for the cluster ofM = 8
sites, withL0 = LU = 2 andε0 = 0.

n BC D8 〈n0σ 〉 〈nUσ 〉 〈S2
0〉 〈S2

U 〉
1.75 PBC 0.064 0.989 0.760 0.015 0.359
1.50 ABC −0.095 0.969 0.530 0.045 0.601
1.25 PBC 2.524 0.794 0.455 0.260 0.536
1.00 ABC 3.184 0.628 0.371 0.377 0.465
0.75 PBC 3.299 0.460 0.289 0.381 0.386
0.50 ABC 2.364 0.318 0.181 0.334 0.257
0.25 PBC 1.495 0.134 0.115 0.178 0.169

First of all, we notice that unlike in a homogeneous system the sign ofD oscillates
when the boundary conditions are fixed, and the fillingn increases and approaches half-
filling. One findsD > 0 for n = 0.25, 0.75, 1.25, and 1.75, i.e., for unequal numbers of
up- and down-spin electrons, andD < 0 for n = 0.5, 1.0, and 1.5, i.e., for equal numbers
of up- and down-spin electrons. This happens if one takes the same PBC for all different
n. However, if we fix the boundary conditions using the minimum-of-energy principle, the
sign oscillation phenomenon can be avoided. In fact, our arguments given in section 3.1
(for the qualitative explanation of the sign oscillation phenomenon) apply also to the present
case of a superlattice, but as the system consists of atoms of two kinds, one has to consider
two separate dispersion curves, similar to those shown in figure 1: one for the free sites, and
the second for the repulsive sites. If the ground state for a given filling is degenerate (for
U = 0) when using PBC, one has to change to ABC instead. An example is the system with
L0 = LU = 2 filled by N = 2 electrons (see table 1). Although this criterion is certainly
an oversimplification, we have verified that it applies to the small clusters considered in the
present study.

Our second observation is that the conductivity is gradually suppressed by the increasing
Coulomb interactionU in the range of fillingn > 1.5. At the value ofU = 4|t | considered,
the one-particle levels for adding a second electron are, in the case considered,ε0 = 0 and
εU + U = 4|t |, and the holes localize. A similar situation is found for low electron filling,
if ε0 = 4|t |. This holds true for both PBC and ABC, and we conclude that the superlattice
structure gives in general quite different conductivities in electronic and hole regimes, and
the metallic behaviour is suppressed forn � 1 (n � 1) if the one-particle hole (electron)
levels of free and correlated atoms are different from each other.

By analysing the numerical results forσreg(ω) we confirm all of the qualitative results
discussed above. ForN↑ = N↓ = 1, 3, and 5, one finds a metal (figure 3), with the
pronounced Drude precursor peak formed when FBC are used (note, however, that the
extraction of the Drude precursor peak from the data is not trivial). In contrast, the system
filled by N↑ = N↓ = 7 electrons is an insulator, and no Drude precursor is found in
figure 3(G).



4762 D Góra et al

Figure 3. The regular part of the optical conductivityσreg(ω), as obtained using FBC (left) and
PBC (right) for the cluster ofM = 8 sites,L0 = LU = 2, ε0 = 0, andU = 4|t |. Different
panels correspond to different electron fillings: (A) and (B),N↑ = N↓ = 1; (C) and (D),
N↑ = N↓ = 3; (E) and (F),N↑ = N↓ = 5; (G) and (H),N↑ = N↓ = 7. The Drude precursor
(DP) is missing in case (G), and the system is then an insulator.

It might be expected that the area of the Drude peak would increase with the total
electron numberN in the cluster. In fact, the behaviour of the Drude peak is governed not
just by the total electron count in the cluster, but also by theindividual filling of the free and
repulsive sitesin the superlattice (in real space). These fillings can be controlled by varying
the orbital energyε0 (while keepingN fixed). As an example, we give the numerical
results in table 2 for three selected values ofε0. Using our criterion of minimizing the
total energy of the system, the closed-shell systems are more relevant, obtained by taking:
PBC forM = 6, ABC for M = 8, and PBC forN = 10. The extrapolation to an infinite
cluster gives in this case an insulating behaviour, represented byD∞ = 0 for ε0 = −5|t |.
In contrast, for larger values ofε0 = 0 and 2|t | one findsD∞ > 0, and the systems are
metallic. Thus, we conclude that the one-particle energies of the two kinds of atom in the
superlattice have to be close to each other in order for one to obtain a metallic behaviour,
and the most favourable case for metallic behaviour is given byε0 = U/2.

An example of numerical data for anM = 6 cluster with two subgroups of uncorrelated
and free orbitals,L0 = LU = 3, is shown in figure 4. As forL0 = LU = 1 (table 2), using
the FBC one finds an insulating behaviour forε0 = −5|t | (figure 4(A)). The system changes
gradually into a weak metal with increasingε0, and the DP occurs at the energyω ' |t |
(figures 4(C) and 4(E)). We note, however, that the metallic behaviour is much weaker
than that for the alternating free and correlated orbitals in theL0 = LU = 1 case. This
shows that the geometry of the superlattice plays an important role in the conductivity, and
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Table 2. Selected Drude peak weightsDM for half-filled systems and forL0 = LU = 1.
The boundary conditions used correspond to closed-shell systems with lower energy, and are
indicated in round brackets. The Drude weight for the infinite system,D∞, was obtained using
exponential extrapolation, ln|DM | = a + b/M.

ε0/|t | D6 D8 D10 D∞

−5.0 0.066 (PBC) 0.009 (ABC) 0.002 (PBC) 0.00
0.0 2.697 (PBC) 2.092 (ABC) 1.585 (PBC) 0.75
2.0 3.721 (PBC) 3.576 (ABC) 3.494 (PBC) 3.18

Figure 4. The regular part of the optical conductivityσreg(ω), as obtained using PBC (left)
and FBC (right) for the cluster ofM = 6 sites at half-filling, withL0 = LU = 3, U = 4|t | at
half-filling, for different values ofε0: −5|t | in (A) and (B), 0 in (C) and (D), and 2|t | in (E) and
(F). Note that the precursor is mixed with low-energy excitations—using FBC to calculateD,
the error can be estimated to be as large as 30–50%. Therefore one must use PBC for clusters
with different sizes and subsequently extrapolate (compare tables 2 and 3).

the clusters of correlated orbitals rapidly suppress the metallic behaviour. In the clusters
with PBC one finds a systematic change ofσreg(ω), with the weight shifted to lowerω
for increasingε0, and an increasingly weak Drude peak found forε0 = 0 andε0 = 2|t |
(figures 4(D) and 4(F)).

The results of a more systematic study of the gradual transition from an insulating to
a metallic superlattice are summarized in table 3. Regardless of the average filling and
the superlattice structure, the systems are insulating as long asε0 ' −5|t |, with a very
low value of the extrapolated Drude weight,D∞. The metallic behaviour is found when
the degeneracy of the single-site levelsε0 and εU is approached, and all of the systems
studied withn 6 1 are metallic forε0 = −|t |. For the systems below half-filling, one
finds the best metals when the free levels are somewhat above the correlated levels, e.g.,
ε0 − εU ' |t |. This is easily understandable, as the electron correlations partly suppress
the metallic behaviour. In contrast, at half-filling the largest value ofD∞ in the L0 = 3,
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LU = 1 clusters was found atε0−εU ' 2|t |, i.e., for the particle–hole-symmetric spectrum.
The systems above half-filling are good metals forε0 − εU ' U , which follows from

the particle–hole symmetry. As an example, we show the relevant results for theL0 = 1,
LU = 4 cluster in table 3 for two fillings symmetric with respect ton = 1: n = 0.8 and
n = 1.2. The extrapolated values ofD∞ = 1.26 found independently forε0 = 5|t | at
n = 1.2 and forε0 = −|t | at n = 0.8 confirm the particle–hole symmetry of these clusters.

Table 3. Selected Drude peaksDM for various clusters and fillings atU = 4|t |. DM1 was
obtained for small clusters with a single unit cell, i.e.,M = L0 + LU , using the boundary
conditions indicated in round brackets. In every case the results correspond to minimal energy
of the ground state (the closed-shell configuration).DM2 was obtained for larger clusters
consisting of two unit cells, i.e.,M = 2(L0 + LU), with ABC (the closed-shell configuration).
The Drude weight for the infinite system,D∞, was obtained using exponential extrapolation,
ln|DM | = a + b/M. A crude (pessimistic) estimate of the error which follows from the
differences between the linear and exponential extrapolations is up to 0.5 forL0 = LU = 1,
n = 1, for the clusters withM = 6, 8, and 10 sites.

L0 LU n ε0/|t | DM1 DM2 D∞

2 2 0.5 −5.0 0.625 (PBC) 0.331 0.00
−1.0 2.387 (PBC) 1.118 0.52

0.0 2.934 (PBC) 2.364 1.90
0.8 3.016 (PBC) 2.722 2.46
2.0 2.405 (PBC) 1.174 0.57
5.0 0.737 (PBC) 0.036 0.00

1 4 0.8 −5.0 1.570 (ABC) 0.390 0.10
−1.0 2.973 (ABC) 1.933 1.26

0.0 3.352 (ABC) 2.694 2.16
0.8 3.486 (ABC) 3.080 2.72
2.0 3.084 (ABC) 2.019 1.32
5.0 1.438 (ABC) 0.161 0.02

3 1 1.0 −5.0 2.130 (ABC) 0.520 0.13
−1.0 3.744 (ABC) 2.490 1.66

0.0 4.056 (ABC) 3.263 2.63
0.8 4.191 (ABC) 3.649 3.18
2.0 4.250 (ABC) 3.828 3.47
5.0 3.744 (ABC) 2.490 1.66

1 4 1.2 −5.0 0.734 (PBC) 0.033 0.00
−1.0 1.438 (PBC) 0.160 0.02

0.0 1.831 (PBC) 0.314 0.05
0.8 2.273 (PBC) 0.629 0.17
2.0 3.084 (PBC) 2.038 1.35
5.0 2.973 (PBC) 1.932 1.26

4. One-particle excitations

4.1. A toy model of two noninteracting sublattices

Before we discuss the densities of states as obtained for the clusters which model a
superlattice, let us introduce a simplified model (called below the toy model) in which
the superlattice can be treated as two disjoint subsystems: the first one consists of free sites,
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while the second is composed of repulsive sites. This might be realized by assuming the
atomic limit, tij = 0, but also could be realized by considering a long-distance hopping
limited to atoms of the same kind, i.e.,t0−0 6= 0, tU−U 6= 0, and t0−U 6= 0. Here we
have in mind this second nontrivial possibility, which results for large enoughU in a
density of states which consists of three bands: a ‘metallic’ band due to free sites, a lower
Hubbard band (LHB), and an upper Hubbard band (UHB). The Hubbard bands result from
the electronic states of correlated atoms above the metal–insulator transition. Of course, the
Hubbard bands change their spectral weights in the usual way [26], and we do not discuss
here the filling dependence.

Figure 5. A schematic diagram of the density of statesN(ω) for the model of superlattice (1)—
the ‘three bands’ (MB—metallic, LHB/UHB—lower/upper Hubbard) representN(ω) in the ‘toy
model’ for ε0 = 0 and typical parameters. For convenience, the total number of available states
in each band (2M0 andMU , respectively) refers to the model with half-filled correlated orbitals.

The electrons filling the system may be then allocated to one of the three bands: if they
occupy free sites—to the ‘metallic’ band (MB), and if they occupy the correlated atoms—
either to the LHB, or to the UHB. This simplified model of the density of statesN(ω)

is shown in figure 5. The MB may accommodate 2M0 electrons, whereM0 is the total
number of free sites. The corresponding capacities of the LHB and UHB at half-filling of
the correlated atoms are bothMU .

Taking εU = 0, let us consider the changes of the electron distribution as the parameter
ε0 is varied. Forε0 < 2(t0−0+ tU−U) (note that botht0−0 < 0 andtU−U < 0), all electrons
will fall into the MB band, provided thatN < 2M0. Only whenN > 2M0 will the
MB become full, with all of the free sites doubly occupied, and will the electrons start to
occupy first the LHB, and, ifN > 2M0 +MU , also the UHB, with the average density at
any repulsive site〈nU,σ 〉 = 0.5(N − 2M0)/MU . For ε0 > 2t0−0 + 2tU−U , the MB starts
to overlap with the LHB (and if we relax the assumption about noninteracting sublattices,
there will be not only an overlap but also a substantial hybridization between the bands). If
εU < ε0 < U , the MB falls in between the LHB and the UHB. For the present parameters of
the model, one expects the strongest overlap (one effective band) whenε0 = U/2, provided
thatU is not too large.

4.2. Half-filled superlattices

In order to substantiate the qualitative picture of section 4.1, we determined the spectral
densities of the superlattices considered, and studied their changes as a function ofε0. We
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Figure 6. The one-particle spectral densityN(ω) for the half-filledM = 6 cluster,L0 = LU =
3, with PBC atU = 4|t |. Dotted and solid lines correspond to PES,NPES(ω), and to IPES,
NIPES(ω). Panels (A) to (F) correspond to different values ofε0 = −8, −4, −2, 0, 4, and 8, in
units of |t |. Note that the three bands, MB, LHB and UHB, are separated in panels (A), (B), and
(F), while in the intermediate regime where 06 ε0 6 4|t |, these bands hybridize. The vertical
line shows the Fermi level.

define the one-particle spectral densities for photoemission (PES) [18, 27]:

NPES(ω) =
∑
inσ

|〈ψN−1
n |ciσ |ψN

0 〉|2δ(ω + EN−1
n − EN0 ) (11)

and for inverse photoemission (IPES):

NIPES(ω) =
∑
inσ

|〈ψN+1
n |c†iσ |ψN

0 〉|2δ(ω − EN+1
n + EN0 ). (12)

These expressions can be computed directly by determining the ground state of anN -electron
system,|ψN

0 〉, and the excited states ofN + 1 andN − 1 systems,|ψN±1
n 〉, respectively

[15, 16]. We have studied the simplest case represented by theM = 6 cluster, withL0 = 3
andLU = 3, using PBC. The results obtained at half-filling are shown in figure 6. (The
reference zero energy corresponds to the ground-state energy of the half-filledM = 6
cluster.)

One finds gradual modifications of the total spectral density,N(ω) = NPES(ω) +
NIPES(ω), in agreement with the qualitative predictions of the toy model. At large negative
ε0 = −8|t | (figure 6(A)) one finds the structures located at aroundω = 0, with the width of
approximately 4|t0−0|. The lower (PES) part corresponds to the MB, while the upper (IPES)
part corresponds to the LHB of the correlated atoms. The peaks found in the spectra are
influenced by finite-size effects. Their number agrees with the allowed number of occupied
one-particle states. Due to covalency within the superlattice, the correlated orbitals are
partly occupied. However, the interference effects in the wave function make the weight of
the UHB still very small [6]. Both the LHB and the UHB have approximately the width
4tU−U . In fact, to a good approximation, the electronic structure in this case consists of
the bonding occupied states of the MB, and the unoccupied antibonding states of the LHB,
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with a gap of aboutεgap = 5.34. Therefore, the system is an insulator. We note that the
spectrum is almost symmetric with respect toω = −4|t |, which is a consequence of the
particle–hole symmetry of the Hamiltonian atU = 0.

Increasingε0 results in a gradual closing of the gap, and in increasing weight of the
UHB. The case whereε0 = −4|t | (figure 6(B)) still has a small gap of 1.7|t |; and the MB and
the LHB almost overlap. When the Drude peaks are calculated and a proper extrapolation
from data (using at least two different cluster sizes) is made, we find that the system is still a
weak insulator. This insulating behaviour vanishes atε0 ' −2|t |, and the MB and the LHB
overlap, as shown in figure 6(C). Further increase ofε0 results in even stronger hybridization
between different subbands, and in the increasing occupancy of the UHB, i.e. in increasing
double occupancies of the repulsive sites (figure 6(D)). This in turn increases the tendency of
the system towards antiferromagnetism, and this tendency is independent of the superlattice
structure, i.e., occurs for differentL0 andLU , as discussed in section 5.1. The strongest
AF correlations occur in the present case atε0 = 2|t | (figure 6(E)). Further increase ofε0

results in a gradual suppression of AF correlations, as the correlated orbitals are more than
half-filled. Hybridization between the atoms of different kinds is weaker, and the metallic
band moves above the UHB, as shown forε0 = 8|t | in figure 6(F). The structure around
12|t | corresponds to a higher-order satellite which originates from the UHB. However, most
of the weight in the UHB belongs to the PES spectrum, which indicates that the correlated
orbitals are almost completely filled.

5. Magnetic properties

5.1. Correlation functions

The magnetic properties of 1D superlattices were discussed by Paiva and Santos [5], and
we address here a few aspects not covered by this analysis, namely the dependences of
the magnetic correlations on the energy splitting between the one-particle energies of two
atoms,1, and on the value of Coulomb interactionU . Thereby, we consider different
systems at and away from half-filling.

The magnetic correlation function in a paramagnetic system is defined as follows [5]:

〈Si · Sj 〉 = 3

4
〈mimj 〉 (13)

wheremi = ni↑ − ni↓ corresponds tozth component of the spin at sitei, and i, j =
1, 2, . . . ,M. Note that fori = j it defines local moments [28, 29]:

〈S2
i 〉 =

3

4
(n− 2〈ni,↓ni,↑〉). (14)

The latter function is a measure of the localization, as for a half-filled metal (n = 1) one
finds that 〈S2

i 〉 = 3/8, while for localized electrons at half-filling one has〈ni↓ni↑〉 =
0, and 〈S2

i 〉 = 3/4. The intersite correlation functions allow one to investigate the
antiferromagnetic (AF) correlations, and their dependence on the structure of the cluster.

It is convenient to introduce average electron densities per free and correlated atom:

〈n0σ 〉 = 1

M0

M0∑
i∈F
〈niσ 〉

〈nUσ 〉 = 1

MU

MU∑
i∈R
〈niσ 〉

(15)
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and local moments per free and correlated atom, defined as follows:

〈S2
0〉 =

1

M0

M0∑
i∈F
〈S2

i 〉

〈S2
U 〉 =

1

MU

MU∑
i∈R
〈S2

i 〉
(16)

whereM0 andMU are the total numbers of free and repulsive atoms within the cluster,
respectively.

As expected, the occupation of the free sites decreases with increasingε0, and the
electrons are transferred to the repulsive sites. If〈n0σ 〉 reaches the value 0.5, then the local
magnetic moments on the free-site sublattice will be maximal; if〈nUσ 〉 = 0.5, the same
holds for the repulsive sites of the sublattice considered. On the other hand, if the MB
is completely filled, we expect zero magnetic effect on the free sites. Schematic diagrams
showing the qualitative predictions of the toy model are shown in figure 7.

(A) (B) (C) (D) (E) (F) (G)

Figure 7. A schematic diagram of the dependence of the local moments,〈S2
0〉 and 〈S2

U 〉, on
a free/repulsive site as functions ofε0. Different cases are organized in separate columns
corresponding to the total number of electrons increasing to the right. With increasingε0 the
electrons move from free to correlated orbitals, causing the changes of local moments.

5.2. Local moments at half-filling

Let us start the analysis of magnetic properties with the half-filled systems. As expected, the
occupation of the free sites decreases with increasingε0, and the electrons are transferred to
the repulsive sites. If〈n0σ 〉 reaches the value 0.5, the local magnetic moments on the free
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Figure 8. The average local moments,〈S2
0〉 and 〈S2

U 〉, at free and repulsive sites, respectively,
for different values ofε0, as obtained for theM = 6 cluster with ABC at half-filling(n = 1)
andU = 4|t |, with different total numbers of free sitesL0.

sites are maximal; if〈nUσ 〉 = 0.5, the same holds for the repulsive sites of the sublattice
considered. On course, ifε0 is much lower thanεU , the MB is almost completely filled, and
the LHB is almost completely empty, as shown in figure 7, and one expects no magnetic
effects. Indeed, in such a case the magnetic moment of the free layers is close to zero, but
the local moments at the repulsive sites have already formed at aroundε0 = −4|t |, if there
are only a few free atoms (L0 = 1 and 2 in figure 8). With increasingε0, the local moments
form at the correlated sites also, for superlattices with lower densities of correlated sites
(L0 = 3, 4, and 5). In fact, the local moments〈S2

U 〉 are maximal at aroundε0 = 2|t |, which
corresponds to the particle–hole-symmetric spectrum at the value considered,U = 4|t |.

It is interesting that the local moments at correlated atoms are almost independent of
the type of the superlattice, which confirms that the local moments form solely due to
on-site Coulomb interactionU . The moments〈S2

U 〉 ' 0.5 were found atε0 = 2|t | and
U = 4|t |, which is well above the band limit, and indicates gradual localization of electrons
in the correlated orbitals. In contrast, the moments in uncorrelated orbitals,〈S2

0〉 ' 3/8,
remain close to the independent-electron limit, if the uncorrelated atoms form clusters of
at least two atoms. However, a single uncorrelated atom is strongly polarized, and we find
〈S2

0〉 ' 0.46 atε0 = 2|t | andU = 4|t |, as shown in figure 8 forL0 = 5.
The interchange of the local magnetic moment between free and repulsive sites was

reported previously in reference [5] for systems below half-filling. Here a similar effect
was detected for a half-filled system, and it is found that it follows from the change ofL0

andLU , or more precisely from changing their ratio.
The local moments at half-filling increase quite quickly in the correlated orbitals with

increasing value ofU , as shown in figure 9. The data for〈S2
U 〉 show that the moment
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Figure 9. The local moments on the uncorrelated (top) and correlated (bottom) orbitals (〈S2
0〉

and〈S2
U 〉, respectively) for increasing local interactionsU/|t |, as obtained for theM = 6 clusters

at half-filling (n = 1) with differentL0/LU textures, and forε0 = U/2.

formation is robust and does not depend on the local structure of the superlattice—the
moments are very close to each other for a given value ofU , regardless of the type of the
superlattice, and only a rather weak enhancement is found due to clustering of correlated
atoms, represented by the cluster withLU = L0 = 3.

There are more differences in the behaviour of the free orbitals. Although in principle
no local moments are expected, one may suspect that the moments could be induced by the
correlations between the correlated and uncorrelated orbitals. Such correlations are weak as
long as the free orbitals form islands in between the correlated ones (e.g., the clusters with
L0 = 2, LU = 1, andL0 = LU = 3), but are enhanced for single atoms with uncorrelated
orbitals (see〈S2

0〉 for the cluster withL0 = 1, LU = 2 in figure 9).

5.3. Local moments away from half-filling

Up to now, to focus our attention, we have analysed half-filled systems using anM = 6
cluster with different values ofL0 andLU . Sticking to the same systems, we now consider
different fillings: n = 8/6 andn = 4/6. The results of numerical calculations are displayed
in figures 10 and 11.

For filling larger thann = 1, we expect the MB to be completely filled at low energyε0,
and thus that the system is an insulator, whereas the UHB has unoccupied states. Therefore,
one expects the local magnetic moments to behave like those shown qualitatively in the last
few columns of figure 7. As theε0-parameter increases, the system undergoes an insulator–
metal transition (theL0 = 1, 2, and 3 curves in figure 10). This is consistent with the values
of D determined, as reported in section 3.2. However, the point of the transition itself shifts
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Figure 10. As figure 8, but above half-filling
with n = 1.33.

Figure 11. As figure 8, but below half-filling
with n = 0.67.

in accord with the changes of the filling. In contrast, no metal–insulator transition was found
at L0 = 4 and 5, and the systems are metallic.

The local moments found in figure 10 agree reasonably well with the expected qualitative
dependence. The local moments〈S2

U 〉 are more pronounced at lower values ofε0 than at
n = 1, and atL0 = 2 one finds even large local moments〈S2

U 〉 ' 0.62 down toε0 = −4|t |.
This follows from the particular filling which matches single occupancy of the correlated



4772 D Góra et al

sites (LU = 4), and the remaining electrons give double occupancies at free sites (L0 = 2).
In contrast to the half-filled case, there are no induced moments at free atoms in this case,
and only a weak enhancement of〈S2

0〉 could be detected atL0 = 1.
For an electron filling smaller than half-filling, one starts from the opposite situation at

large negativeε0: the MB is not completely filled and the LHB is empty. Thus, one finds
at first no local moments on free atoms, if their density is small (L0 = 1 and 2 in figure 11),
but if 2M0 > N↑ +N↓, one finds values of〈S2

0〉 close to the band limit (seeL0 = 3, 4, and
5 in figure 11). The system behaves like a metal, at least for the range−U < ε0 < U , and
we have verified thatD 6= 0 in this case.

We note that the case of low density of free atoms is again resulting in enhanced local
moments, but now forε0 > εU + U . As expected, the values of〈S2

U 〉 for a given value of
ε0 at n = 0.67 are identical with the respective values obtained with−ε0 + U , and large
local moments〈S2

U 〉 ' 0.62 are found atε0 ' 4|t | (not shown). The same particle–hole
symmetry arises for the data for〈S2

0〉, and we find a Gaussian shape forL0 = 1 and 2 which
corresponds to the changing number of electrons and holes forn = 1.33 andn = 0.67 within
the free orbitals, respectively.

If the electron levels are degenerate, the local moments are close to the limit of
independent electrons for low electron density; an example withL0 = LU = 2 with
M = 8 is detailed in table 1, where〈S2

U 〉 ' 〈S2
0〉 for n 6 0.75. Intermediate values ofU

only lead to the formation of moderate local moments in the correlated orbitals atn = 1
(〈S2

U 〉 = 0.47).

Figure 12. The intersite spin–spin correlations〈Si ·Si+l〉 as functions of the distance from the
reference sitei = 3 and 5, as obtained for theM = 6, L0 = LU = 3 cluster at half-filling, using
PBC (ε0 = 0, U = 4|t |). The alternating values indicate the tendency of the system towards
spin-density waves (SDW).

5.4. Intersite spin correlations

The systems at half-filling exhibit AF correlations, indicating their proximity to the spin-
density-wave instability. This behaviour is quite remarkable, as the AF correlations
include also the uncorrelated atoms, as shown in figure 12. We have verified that the AF
correlations exist for different clusters modelling superlattices. Here we present only the
most unfavourable case ofL0 = LU = 3 for a cluster ofM = 6 sites. At the intermediate
valueU = 4|t | one finds that〈Si · Si+1〉 = −0.26± 0.04, taking the reference value as
either i = 3 or i = 5; for the other values ofi the results are similar. In the first case
one starts from a free atom and a neighbour is correlated, while in the second case the two
atoms involved are correlated. The symmetry of the cluster imposes the symmetric shape
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of 〈Si · Si+l〉 with respect tol = 3 for i = 5, and〈Si · Si+5〉 = 〈Si · Si+1〉 = −0.30.
The spin–spin correlation function of two uncorrelated atoms is considerably lower; e.g.,
〈Si · Si+5〉 = −0.18 is found fori = 3.

Altogether, the spin–spin correlations are found to be primarily of short-range character.
As shown in figure 12, the signs of〈Si · Si+l〉 alternate, and one finds for degenerate one-
particle levelsε0 = εU = 0 atU = 4|t | that |〈SiSi+l〉| < 0.10 if 1< l < M − 1.

Figure 13. The intersite spin–spin correlations〈Si ·Si+l〉 as functions of the distance from the
reference sitei = 3 and 4, as obtained for theM = 6, L0 = LU = 3 cluster at half-filling using
PBC and particle–hole-symmetric structure (ε0 = U/2), for different values ofU : (A) U = 2|t |,
(B) U = 8|t |, and (C)U = 16|t |. The alternating values indicate the tendency of the system
towards SDW. The AF correlations and the frustration of the magnetic interactions increase with
increasingU .

We investigated also the changes of AF spin–spin correlations with increasing values of
U . An example for the particle–hole-symmetric model withε0 = U/2 shown in figure 13
demonstrates that these correlations develop quite quickly, and are already quite significant
atU = 2|t |. Thus, the SDW-like state forms at smallU , and the amplitude of the spin–spin
correlations steadily increases with increasingU . The case ofU = 8|t | already represents
relatively strong localization of electrons (see figure 9), and the spin–spin correlations are
almost in changed on increasingU from 8|t | to 16|t |.
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6. Discussion and summary

We have shown that the electronic structure and the magnetic properties of superlattices may
be well understood starting from the effective model which originates from the atomic limit,
and consists of three subbands, a MB for the free atoms, and two Hubbard subbands: the
LHB and UHB for the correlated atoms. The superlattice is characterized by a competition
between localization of electrons on the correlated orbitals, and the accompanying formation
of local moments, and the hybridization between the free and correlated orbitals which
results in the metallic behaviour. By varying the splitting between the one-particle levels
for free and correlated orbitals,1 = ε0 − εU , one realizes a transition from an insulating
to a metallic regime. The latter may in principle be considered as an effective hybridized
broad band, provided that the Coulomb interactionU is not too large (in units of|t |).

The model considered has a particle–hole-symmetric spectrum atεU = 0, andε0 = U/2,
where the hybridization and the metallic behaviour are strongest at half-filling; otherwise the
particle–hole symmetry is explicitly broken. However, varying the total fillingn and taking
ε0 6 U/2, one has already covered all of the physically different cases, as forε0 > U/2 the
electronic properties are equivalent in terms of hole density,nh = 2− n. Thus, we limited
ourselves in most cases to discussing the cases whereε0 6 U/2. Below, we discuss the
characteristic behaviour found depending on the value of1, and electron fillingn.

Most of the characteristic features can be detected using large negativeε0 � −|t |,
and 〈n0σ 〉 ' 1, 〈nUσ 〉 ' 0.5. In this case the moments at the repulsive sites are well
formed and dominate the magnetic behaviour; only the repulsive sites are magnetic, but
they are separated by the nonmagnetic (doubly occupied) free sites. Thus, the system is
not conducting. The clusters considered do not allow us to reach conclusions regarding the
magnetic ordering of the local moments in this regime, but it is expected that possible long-
range order in the thermodynamic limit will strongly depend on the sequence of correlated
and uncorrelated orbitals, given byLU andL0.

If ε0 � −|t |, and the total electron density is decreased to〈n0σ 〉 ' 1, 〈nUσ 〉 < 0.5,
the MB hybridizes more strongly with the partially filled LHB of the correlated orbitals,
and the system is a weak conductor, with an increasing conductivity for increasingε0 and
approachingε0 ' εU (figure 6(C)). The typical local moment results are shown in figure 10
(L0 = 3, 4, andn = 8/6), and in figure 8 (L0 = 1, 2, 3, andn = 1). For negativeε0,
electrons doubly occupy the free sites; for positiveε0, local pairs at free orbitals are broken
and one finds the density distribution close to one electron per (free or correlated) site. This
leads to AF short-range correlations, and possibly also to the AF long-range order, if the
magnetic interactions are not frustrated. While the latter could not be investigated in our
finite clusters, the short-range AF correlations are found to be generic, and to depend only
weakly on the specific type of superlattice (i.e., onL0 andLU ).

Further decrease of the total electron density results for large negativeε0 in a partially
filled MB, and an empty LHB of the correlated sites (figures 6(A) and 6(B)). Now the
repulsive layers form a barrier to the conduction (in real space), and only whenε0 is
increased, and the MB and LHB start to hybridize more strongly, may the system become
conducting (see table 3, forn = 0.5). The almost empty correlated orbitals give a negligible
contribution to the magnetism, and the magnetic correlations due to free sites dominate
(cf. figure 11 forL0 = 3 andn = 4/6 together with figure 8 and figure 10).

We presented the results obtained in most cases for small clusters ofM = 6 sites. The
conclusions, however, concern the local properties of the systems, and thus are representative
for larger clusters as well. To confirm this, we considered almost all of the possible systems
with differentM but fixed densityn (note thatN must be an integer). The typical examples
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are: (i)M = 4 andM = 8 for L0 = LU = 2, with the fillingsn = 2/4 andn = 6/4;
(ii) M = 5 andM = 10 for L0 = 1, LU = 4, with the fillingsn = 4/5 andn = 6/5. The
qualitative results agreed with expectations, and in particular the weights of the Drude peak
showed very systematic behaviour (summarized in table 3). These results lead us to believe
that the small-cluster results discussed are also representative for the properties of infinite
lattices.

Summarizing, we studied the Hubbard-type Hamiltonian defined for 1D superlattices.
Using the Lanczos algorithm, we computed (exactly) ground-state properties, local magnetic
moments, the Drude peak amplitudes, and the spectral functions for small clusters. While
the results obtained confirm the earlier results of Paiva and Santos [5] for magnetic properties
such as local magnetic moments, frustration of magnetic interactions, and magnetic surface–
bulk effects, they could be extended by studying the conductivity of the systems, and the
dependence of the Drude peak on the position of the one-particle levelε0, and on the lattice
filling n. Varying these quantities, one obtains both metallic and insulating phases, which
has important implications for the magnetic properties. We would like to emphasize that
the qualitative features could always be predicted using a simple model of the electronic
structure which consists of three bands. It can therefore be considered as a useful tool which
allows one to avoid time-consuming numerical diagonalization. Altogether, one finds that
the magnetic and electronic properties of superlattices are more complex than those of
homogeneous systems, and we believe that the changes detected in the conductivity could
be of importance for real systems, where the carrier densityn and the level splitting1
might be changed by doping and by external parameters.

We believe that the situation given byU/|t | ' 4 studied primarily in the present
contribution is representative for superlattices with 3d transition metal magnetic layers
within nonmagnetic media. However, one has to realize that the nondegenerate model
for d orbitals may serve only as a qualitative model describing the localization of electrons
and the formation of local moments due to Coulomb interaction. A more quantitative
description would require extending the model to degenerate d orbitals at the correlated
sites [30]. The Hund’s rule exchange would then help to form the local moments, and it is
expected that the magnetic correlations would be enhanced.
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